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Android robots are entering human social life. However, human–robot interactions may be complicated
by a hypothetical Uncanny Valley (UV) in which imperfect human-likeness provokes dislike. Previous
investigations using unnaturally blended images reported inconsistent UV effects. We demonstrate an
UV in subjects’ explicit ratings of likability for a large, objectively chosen sample of 80 real-world robot
faces and a complementary controlled set of edited faces. An ‘‘investment game” showed that the UV pen-
etrated even more deeply to influence subjects’ implicit decisions concerning robots’ social trustworthi-
ness, and that these fundamental social decisions depend on subtle cues of facial expression that are also
used to judge humans. Preliminary evidence suggests category confusion may occur in the UV but does
not mediate the likability effect. These findings suggest that while classic elements of human social psy-
chology govern human–robot social interaction, robust UV effects pose a formidable android-specific
problem.

� 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Robots are no longer merely features of our technological
environment, but are beginning to penetrate our social sphere
(Breazeal, 2003; Fong, Nourbakhsh, & Dautenhahn, 2003; Zhao,
2006), and people who interact with robots are increasingly unli-
kely to be technically trained experts and thus more likely to use
casual intuitive approaches to the interaction. Unexpectedly
negative reactions to imperfectly human robots have become a
major problem in the design of socially interactive robots. This
phenomenon (Fig. 1), termed the ‘‘Uncanny Valley” (Mori, 1970),
has dominated discussion of human reactions to anthropomorphic
robots in both popular culture and research literature. Despite its
prominence, the existence of an Uncanny Valley (UV) is controver-
sial (Burleigh, Schoenherr, & Lacroix, 2013; Hanson, 2006; Katsyri,
Forger, Makarainen, & Takala, 2015; MacDorman, Green, Ho, &
Koch, 2009), and a recent systematic review concluded that
‘‘empirical evidence for the uncanny valley hypothesis is still
ambiguous if not non-existent” (Katsyri et al., 2015). Most studies
attempting to address the issue have employed progressively
morphed blends of human and robot faces, in which two face
images are digitally overlaid with varying degrees of opacity, in
some cases enhanced by warping of features in intermediate
images. This method introduces unnatural distortions, such as
semi-transparent or bent facial features, that would be most
prominent in the more highly processed images in the midrange
of a morphed face series. This could potentially create an UV-like
artifact in that region (Katsyri et al., 2015).

The present study was designed to determine if human reac-
tions to android robots truly exhibit an UV effect, and if so, to
determine the degree to which it actually influences humans’ will-
ingness to trust a robot as a social partner. Experiment 1 examined
human reactions to a large, objectively chosen sample of real-
world android robots using subjects’ explicit judgments of the
mechano-humanness and likability of each face. Next, to deter-
mine whether the influence of a potential UV actually penetrates
humans’ implicit social decision-making, we employed game-
theory methodology to measure subjects’ practical inferences (as
measured by real financial risk-taking) concerning the trustworthi-
ness of each robot. An exploratory analysis tested the theory that
UV effects arise from perceptual category confusion.

In contrast to the large, heterogeneous population of wild-type
robots (with variable facial expressions, positions, and background
settings) of Experiment 1, Experiment 2 took a complementary
approach: we used a precisely controlled series of 6 digitally com-
posed robot faces with constant morphometry to assess social
responses to a single face configuration in its controlled progres-
sion from mechanical to human. In addition, this control over the
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Fig. 1. The Uncanny Valley conjecture, adapted from Mori (1970).
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face images allowed us to measure the effect on trust-motivated
behavior of a subtle change in facial expression.
2. Experiment 1: wild-type robots

2.1. Experiment 1A: quantifying the mechano-humanness spectrum

2.1.1. Methods
All protocols received IRB approval. Experiments 1A–1C used

the same sample of 80 real-world robot faces (Fig. 2) that embod-
ied the myriad design choices made by actual robot designers,
choices that may be subtle and unexpected and may vary depend-
ing on whether the designer’s intention is to build more mechani-
cal versus more human-like robots. The size of the sample and its
diversity in mechano-humanness enabled a fine-grained statistical
analysis of the effect of mechano-humanness on human social per-
ceptions. To reduce bias in selecting the robots or their manner of
presentation (expressions, poses, viewing angles, background set-
tings, etc.), we conducted a systematic search using specific inclu-
sion and exclusion criteria. We performed four Google image
searches on a single day using the following sets of search terms:
‘‘robot face,” ‘‘interactive robot,” ‘‘human robot,” and ‘‘robot.”

Inclusion criteria were:

1. Full face is shown from top of head to chin.
2. Face is shown in frontal to 3/4 aspect (both eyes visible).
3. The robot is intended to interact socially with humans.
4. The robot has actually been built.
5. The robot is capable of physical movement (e.g., not a sculpture

or purely CGI representation that lacks a three-dimensional
body structure).

6. The robot is shown as it is meant to interact with users (e.g., not
missing any hair, facial parts, skin, or clothing, if these are
intended).

7. The robot represents an android that is plausibly capable of
playing the wagering game (e.g., not a baby or an animal).

8. The resolution of the original image (or an exact copy when one
could be located) is sufficient to yield a final cropped image at
100 d.p.i. and 3 in. tall.

Exclusion criteria were:

1. The robot represents a well-known character or a famous per-
son (e.g., Einstein).

2. The image includes other faces or human body parts that would
appear in the final cropped image.

3. Objects or text overlap the face.
4. The robot is marketed as a toy.
When the search returned multiple images of a particular robot,
we accepted only the first image encountered; if an image failed
only graphical criteria, we accepted the next graphically adequate
image of the same robot. We accepted the first 80 face images
satisfying inclusion criteria and cropped them to include top of
head to bottom of chin (or when those features were missing,
images were similarly framed in approximate proportion to the
features).

For Experiments 1A–1C, we sampled subjects via Amazon
Mechanical Turk, a crowdsourcing platform allowing workers to
complete brief online tasks in exchange for pay. The task title
and description were vague to minimize sampling bias and
demand characteristics. We sampled United States workers with
excellent performance history (>95% of previous online tasks
‘‘approved” as high-quality by requester). By contractual agree-
ment with Amazon, workers must be at least 18 years old.
Mechanical Turk workers tend to be somewhat younger, more
educated, and lower-income than the US general population,
but are demographically more representative than typical
university-based research samples (Paolacci, Chandler, &
Ipeirotis, 2010). Studies performed on Mechanical Turk can yield
high-quality data, minimize experimental biases, and successfully
replicate the results of behavioral studies performed on
traditional samples (Paolacci et al., 2010). No subjects were
duplicated across any of the experiments to avoid effects of
previous exposure to the stimuli.

The purpose of Experiment 1A was to determine (1) the
degree to which each robot face is perceived as exhibiting
human and mechanical properties, (2) the extent to which
human-resemblance and mechanical-resemblance behave as a
unidimensional property, and (3) secondarily, the perceived
valence and magnitude of emotion displayed by each face,
which might strongly influence and confound social responses
in subsequent experiments (Scharlemann, Eckel, Kacelnik, &
Wilson, 2001).

In an online questionnaire, subjects first viewed a page of
thumbnails of all 80 face stimuli (similar to Fig. 2 but with faces
arbitrarily positioned with respect to mechano-humanness) to give
them a sense of the range of the faces they would encounter. Sub-
jects then viewed and rated each of the 80 robot faces one at a
time, with the order of faces randomized for each subject. The rat-
ing scale was a continuous visual analog scale (VAS) without grad-
uations, which can provide more precise and psychometrically
valid ratings than a Likert-type ordinal scale (Reips & Funke,
2008). The subjects controlled how long they viewed each face
with no time limit. If individual subjects had rated both the
mechanical- and human-resemblance of a face, they might have
assumed some relationship between the two properties to which
their ratings should conform (e.g., sum to 100). Therefore, in



Fig. 2. Wild-type robot face stimuli (Experiment 1A–C) numbered and displayed in ascending order of mechano-humanness score estimated in Experiment 1A. Face #54 was
rated closest to the scale’s midpoint (score �4.5).

1 We used the following R packages: car, lme4, lmerTest, reshape2, Hmisc, plotly,
lessR, lsmeans, ggplot2, data.table, lessR, lavaan.
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contrast to the approach used in a previous study (Rosenthal-von
der Pütten & Krämer, 2014), subjects were randomized to rate all
the faces they would be shown according to only one of the two
properties, being asked either ‘‘How mechanical does this robot
face look?” (0–100 scale) or ‘‘How human does this robot face
look?” (0–100 scale). Additionally, every subject answered the
question, ‘‘How much positive or negative emotion is this robot
face showing?” (�100 to +100 scale, where �100 represented
strongest negative emotion and +100 represented strongest
positive emotion). To detect subjects who might have rushed
excessively through the large number of face stimuli, we included
an attention-check consisting of a robot face (not otherwise used in
the survey) with mouth superimposed by red letters directing
subjects to rate that face exactly 41 on the VAS.
We performed all analyses in R, Version 3.0.2,1 defined
statistical significance at a ¼ 0:05, and used two-tailed tests. We
treated face stimulus as the unit of analysis, descriptively character-
izing each face by its mean human-resemblance, mechanical-
resemblance, and perceived emotion. We used the Pearson correla-
tion to assess the relationship between human- and mechanical-
resemblance. Finally, we characterized coherence of ratings within
subjects using the intraclass correlation (ICC), which can be
interpreted within an ANOVA framework as the proportion of total
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variance due to across-subject variability. A higher ICC indicates
more clustering of responses within subjects.
2.1.2. Results
Subjects (n = 66)2 were 56% female, majority Caucasian (85%),

and had median age 32 years. We excluded 78 additional subjects
who failed the stringent attention check.3 The subjects spent a med-
ian of 12.2 s to rate each face. Treating face as the unit of analysis,
face ratings spanned nearly the entire possible range of both
human-resemblance (mean = 42, SD = 31, min = 2, max = 97) and
mechanical-resemblance (mean = 66, SD = 31, min = 3, max = 99),
enabling subsequent experiments to precisely estimate a potential
UV in fine detail throughout the entire mechano-humanness range.
Human-resemblance and mechanical-resemblance were nearly per-
fectly correlated (Appendix Fig. A.1; r = �0.97; p < 0.001). Therefore,
in subsequent experiments, we combined the two measures into a
single unidimensional scale (the ‘‘mechano-humanness” or ‘‘MH”
score) formed by subtracting mean mechanical-resemblance from
mean human-resemblance. The nearly perfect correlation between
mechanical-resemblance and human-resemblance of the robot faces
suggests that the sample did in fact represent a spectrum of android
robots. That is, if the sample had been contaminated with robots per-
ceived as portraying non-human beings (e.g. animals, aliens, mytho-
logical creatures), such robots would likely score low on human-
resemblance regardless of mechanical-resemblance and thus disrupt
the correlation between these dimensions. Ratings of both character-
istics showed little clustering within subjects (human-resemblance:
ICC = 0.05; 95% CI: 0.03, 0.10; mechanical-resemblance: ICC = 0.05;
95% CI: 0.03, 0.10).

Perceived emotion was uncorrelated with both human-
resemblance (r = 0.006; 95% CI: �0.21, 0.23; p > 0.25) and
mechanical-resemblance (r = �0.04; 95% CI: –0.26, 0.18; p > 0.25),
suggesting that the variety of emotional facial expressions encoun-
tered in the wild-type robot face sample would not statistically
confound the analysis of social responses to the robot faces in sub-
sequent experiments.
4 We treated face stimulus as the unit of analysis because entirely separate subject
groups rated faces for mechanical- or human-resemblance and for likability – a
decision made in order to minimize the influence of demand characteristics with
regard to the relatedness of these two properties. Thus, it was not appropriate to treat
single observations as the unit of analysis (e.g., via a mixed-effects approach modeling
likability or trust by a main effect of MH score and a random intercept by subject). As
a sensitivity analysis to assess the impact of accounting for subject-specific effects, we
2.2. Experiment 1B: perceptions of likability

2.2.1. Methods
To measure the perceived likability of each face, we asked sub-

jects to ‘‘estimate how friendly and enjoyable (versus creepy) it
might be to interact with each face in an everyday situation” using
a VAS ranging from �100 (‘‘Less friendly; more unpleasant and
creepy”) to +100 (‘‘More friendly and pleasant; less creepy”). For
Experiments 1B–1C, subjects viewed and rated a randomly
selected subset of 15 of the 80 faces, presented in randomized
order for each subject.

We quantitatively modeled the relationship between mean MH
score and mean likability (as measured in Experiment 1A, with a
higher score indicating increasing human-resemblance and
decreasing mechanical-resemblance) via polynomial regression
fit a linear mixed-effects regression modeling each outcome by a fixed effect of face
stimulus and a random subject intercept. The fitted values of this model for each face
can be considered to represent a face-specific mean for likability and trust,
2 For all experiments, we determined sample sizes in advance and ceased data
collection after reaching or exceeding the intended minimum sample size targets.
Data were kept closed to analysis until the end of data collection, and no subjects
were enrolled after analysis began.

3 After data collection, it became obvious that the attention-check question was
unintentionally stringent. Because success on this question was an a priori
inclusion criterion, we applied this criterion in the main analyses. However,
sensitivity analyses in which we did not exclude responses on this basis yielded
nearly identical results. Subsequent experiments did not include the attention-
check question.
with face stimulus as the unit of analysis (n = 80).4 We used
inverse-variance weighting to allow faces with more precise esti-
mates to be weighted more strongly in model fitting. Throughout
Experiment 1, we used F-tests to compare the fit of linear models
with second-degree, third-degree, and fourth-degree polynomial
terms of MH score in order to select the best-fitting and most parsi-
monious model.

Because we expected a face’s perceived emotion to be strongly
related to its likability, we additionally refit analysis models among
only ‘‘low-emotion” faces, defined a priori as those estimated in
Experiment 1A to occupy the most neutral 10% of the emotion
scale (between 10 and +10 on the �100 to +100 scale). This cate-
gory comprised 50 (63%) of the 80 faces. Additionally, we formally
assessed a possible interaction effect of emotion (first treated as
continuous, then as a dichotomy between low-emotion and other
faces5) via an F-test comparing the fit of the main analysis model
(plus a main effect of emotion) to the same model plus interactions
of perceived emotion with all polynomial terms corresponding to
MH score. The latter flexibly allows for interaction effects of emotion
on the shape of the UV curve. The first interaction analysis (treating
emotion as continuous) addresses whether Uncanny Valley effects
change as robots progress along a bipolar, valenced spectrum of
emotion; in contrast, the dichotomized interaction test assesses
whether the Uncanny Valley effect differs between low-emotion
faces and faces with higher emotion (treating all higher-emotion
faces as comparable regardless of positive or negative emotional
valence).

2.2.2. Results
Subjects (n = 342 after the exclusion of 3 subjects reporting sub-

stantial technical or comprehension problems) were 40% female,6

had median age 30 years, and were 80% Caucasian. Because each
subject viewed a randomized subset of the face stimuli, each face
was rated by 64 subjects on average. Subjects spent a median of
8.1 s responding to each face. Ratings of likability showed little
within-subject clustering (ICC = 0.08; 95% CI: 0.06, 0.11), suggesting
that individual subjects did not differ greatly in overall propensity to
like robot faces in general.

The third-degree model representing the relationship between
mechano-humanness and likability – the lowest-degree polyno-
mial able to represent the two inflection points that crucially
define Mori’s UV (Mori, 1970) – fit significantly better than the
lower- and higher-degree models (third- versus second-degree: F
(1) = 20.49; p < 0.001; fourth- versus third-degree: F(1) = 0.35;
p > 0.25).7 This quantitatively optimized curve (R2

adj ¼ 0:29; Fig. 3A,
solid line) demonstrates several features central to Mori’s conceptu-
alization of the UV. As faces progressed from completely mechanical
respectively, adjusting for subject-specific effects. Characterizing faces by these
‘‘adjusted” means rather than simple means yielded nearly identical results to main
analyses.

5 The continuous interaction test was chosen a priori, while the dichotomized
interaction test was chosen post hoc to clarify results.

6 There was a significantly lower proportion of female subjects in Experiments 1B–
1C than in Experiment 1A. However, because ratings of human- and mechanical-
resemblance did not differ by sex in Experiment 1A (p = 0.70), it was reasonable to
generalize the results of 1A to characterize face means in subsequent experiments.

7 Inverse-variance weights were symmetrically distributed with mean 0.005 and
standard deviation 0.0002.



Fig. 3. Uncanny Valley in wild-type robot faces. Fitted curves are shown for
likability (panel A; Experiment 1B) and trust-motivated behavior (panel B;
Experiment 1C). Solid curves represent best-fitting polynomial regression models
and shaded regions show 95% confidence intervals. Dashed curves represent models
fit to data from only the 50 low-emotion faces. Panel C shows median rating times
in Experiment 1A as a function of MH score; vertical lines mark MH scores
associated with maximum rating time and minimum likability.

8 Inverse-variance weights were left-skewed and bimodal with mean and median
0.001 and standard deviation 0.0002.
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to completely human-like, likability increased to an initial apex (of
+7, approximately neutral) for a moderately mechanical face (MH
score �66). At this point, likability began to decline with increasing
human-likeness, reaching a fitted nadir of �43 – well below neutral
– for a somewhat human-like face (MH score +36). Further increases
in human-likeness once again became associated with increased lik-
ability until a face that is fully human (MH score +100) had an esti-
mated likability of +43.

As expected, faces perceived as showing more positive emotion
were considered more likable (r = 0.57; 95% CI: 0.40, 0.70;
p < 0.001), but because perceived emotion was unassociated with
human-likeness (Experiment 1A), emotion could not have con-
founded a potential UV effect. Although not a statistical con-
founder, variability in the valence and magnitude of perceived
emotion of the robot faces could have acted as a moderator or
added substantial noise to this analysis. However, when we con-
ducted the main analysis among only low-emotion faces, results
were nearly identical to those obtained with the full set of faces
(Fig. 3A, dashed line; third- versus second-degree model: F(1)
= 8.97; p = 0.004; fourth- versus third-degree: F(1) = 0.49;
p > 0.25). Perceived emotionality of the robots did not moderate
the relationship between MH score and likability when treated as
continuous (F(3) = 0.08; p > 0.25) or as a dichotomy between
low-emotion and higher-emotion faces (F(3) = 1.23; p > 0.25).

2.3. Experiment 1C: trust-motivated behavior

2.3.1. Methods
This experiment measured subjects’ inferences concerning the

trustworthiness of each robot face. Rather than ask subjects explic-
itly to rate the face stimuli on a scale of trustworthiness, we used
methods from the field of game theory to attempt to more directly
measure their actual willingness to trust the robots in a game with
real financial consequences. The subjects engaged in a simple
wagering game in which they chose how much money to entrust
to each robot. The game was a variant of the classic ‘‘investment
game” (Berg, Dickhaut, & McCabe, 1995), in which Player A (in this
case, the human) decides how much of an endowment of money to
pass to Player B (the pictured robot). Player B then decides what
portion of the passed amount, if any, will be returned (after having
been tripled by the experimenter) to Player A.

Subjects were told prior to beginning the game that their
wagers (between $0 and $100) would be ‘‘transmitted to the robot
laboratories, and the imaginary money will be distributed accord-
ing to the robots’ decisions.” Because we were interested only in
subjects’ initial judgments of trustworthiness based purely on
robots’ facial appearance, our game did not progress past the first
wager. The game was therefore a true one-shot game involving
no expectation for future play which could have caused subjects
to adopt complicated reputation-building strategies (Mailath &
Samuelson, 2006). To encourage thoughtful wagering, subjects
were told, ‘‘If you are among the 50% best players of the game,
you will receive a bonus of $1.00” (which was 50% more than their
base pay for the task).

Similarly to Experiment 1B, we modeled each face’s perceived
trustworthiness (defined as mean dollars wagered) based on its
MH score estimated in Experiment 1A and further analyzed as in
Experiment 1B.

2.3.2. Results
Subjects (n = 334 after the exclusion of 7 subjects reporting

technical or comprehension problems) were 42% female, majority
Caucasian (75%), and had median age 30 years. Each face stimulus
was viewed on average by 63 subjects. Subjects spent a median of
7.5 s responding to each face. Ratings showed moderately strong
within-subject clustering (ICC = 0.60; 95% CI: 0.56, 0.64), indicating
that some subjects were generally more or less trusting than
others.

As in Experiment 1B, the third-degree model for the relation-
ship between MH score and trust was the best-fitting (third- ver-
sus second-degree: F(1) = 4.80; p = 0.03; fourth- versus third-
degree: F(1) = 0.04; p > 0.25).8 The fitted curve (R2

adj ¼ 0:07;
Fig. 3B, solid line) suggested that, similarly to explicit reports of per-
ceived likability, trust-motivated behavior follows an ‘‘Uncanny Val-
ley” pattern. Faces achieved an initial apex of trustworthiness
(earning a predicted wager of $40) when they were predominantly
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mechanical in appearance (MH score –70), declining to a nadir (pre-
dicted wager $34) when they were somewhat human-like (MH score
+34) and rebounding again to a maximum predicted wager of $44
when they became fully human-like.

As observed for likability, robots perceived as showing more
positive emotion tended to elicit more trust (r = 0.58; 95% CI:
0.41, 0.71; p < 0.001). In contrast to likability, the UV effect was
entirely dampened when only the 50 faces displaying low emotion
were analyzed; a linear model without inflection points now fit as
well as second- or higher-degree polynomials (Fig. 3B, dashed line;
second-degree versus linear model: F(1) = 0.06; p > 0.25). Per-
ceived emotion did not, however, significantly moderate the rela-
tionship between MH score and trust when treated as continuous
(F(3) = 0.43; p > 0.25) or when dichotomized (F(3) = 0.46;
p > 0.25).9

2.4. Sensitivity analysis excluding the most human-like robots

2.4.1. Methods
To investigate whether the most human-like robots drove the

entire observed effect of mechano-humanness, we conducted a
post hoc sensitivity analysis in which we removed the top 20 most
human-like faces (25%), yielding an analysis sample of the least
human-like 60 faces. We used an F-test to compare the fit of a
third-degree model (as in the main analysis) to that of a null model
including only an intercept (but no coefficients for MH score). If the
most human-like faces dominated the observed Uncanny Valley
effect, the third-degree model would be expected to fit no better
than the null model among this restricted subset of faces.

2.4.2. Results
For likability, the third-degree model continued to outperform

the null model (F(3) = 5.19; p = 0.003). For trust, restriction to this
subset of faces did reduce the performance of the third-degree
model to match that of the null model (F(3) = 1.57; p = 0.20). Over-
all, these results suggest that the Uncanny Valley for likability is
robust even with a dramatic range restriction to only the most
mechanical 75% of faces. The contrasting result for trust is consis-
tent with the most human-like faces tending to drive the Uncanny
Valley for trust. On the other hand, trust showed a less dramatic
effect than likability in the primary analysis, and would therefore
also be more strongly impacted by a loss of power due to a 25%
reduction in sample size.

2.5. Exploratory analyses of category confusion

A prominent hypothesis (Katsyri et al., 2015) postulates that the
UV arises from ambiguity that is experienced at the boundary
between perceptual categories (de Gelder, Teunisse, & Benson,
1997; Repp, 1984) – in this case, between non-human and human
categories. Such category confusion is measured experimentally as
an increase in the time required to categorize a stimulus (de Gelder
et al., 1997; Pisoni & Tash, 1974; Yamada, Kawabe, & Ihaya, 2013).
We speculated that subjects’ ratings of the amount of category-
typical mechanical- or human-resemblance would exhibit a similar
delay in response time for stimuli near a potential categorical
9 The apparent discrepancy between (1) the nonsignificant dichotomized interac-
tion test and (2) the attenuation in the Uncanny Valley effect observed in the low-
emotion subset of faces may reflect the fact that there were relatively few low-
emotion robots at the most human-like end of the spectrum. The exclusion of these
robots in the low-emotion subset could dampen the curvature of the Uncanny Valley
at the most human-like end of the spectrum by removing the goodness-of-fit
incentive for a nonlinear fit in this region without producing a statistical interaction.
The likability outcome did not show this attenuation among low-emotion faces, likely
because its more pronounced ‘‘valley” justified a higher-degree polynomial fit
regardless of a loss of statistical efficiency in the most human-like region.
boundary. Therefore, we assessed the hypothesis that category
confusion causes the UV by testing the following predictions:

1. The time required to rate mechanical- or human-
resemblance of a face should be greatest for faces closest
to the maximal UV effect on likability.

2. A face’s position on the MH spectrum should influence its
likability indirectly through category confusion. Thus,
rating time should statistically mediate the nonlinear
relationship between MH score and likability.

2.5.1. Methods
We conducted exploratory post hoc analyses to assess both of

these predictions. Using data from Experiment 1A, we used
inverse-variance weighted polynomial regression to model median
rating time by MH score, using F-tests to select the best-fitting
model from linear, second-degree, and third-degree models.

We used structural equation modeling to assess whether rating
time mediated the relationship between MH score and likability.
We modeled likability and time as their best-fitting polynomial
functions of MH scores. Based on visual inspection, we modeled
the relationship between rating time and likability as linear.
Inference for the indirect (mediation) effect of time was based on
bias-adjusted bootstrapping.

2.5.2. Results
The second-degree regression modeling time by MH score was

the best-fitting (second-degree versus linear: F(1) = 12.64,
p < 0.001; versus third-degree: F(1) = 2.32, p = 0.13) and was used
in subsequent mediation analysis. As predicted by the category
confusion hypothesis, the fitted curve (R2

adj ¼ 0:48; Fig. 3C, solid
line) suggests that subjects rated very mechanical faces most
quickly, that rating times increased as faces became more
human-like, and that rating times again declined somewhat as
faces became very human-like. This is consistent with previous
studies that also detected a category boundary in nonhuman–hu-
man morphed face series (at roughly 70% human) using a different
method, namely perceptual discrimination (Cheetham, Suter, &
Jancke, 2014; Looser & Wheatley, 2010). Strikingly, the maximum
rating time we observed occurred at almost exactly the same posi-
tion on the MH spectrum as the point of minimum likability that
we estimated in Experiment 1B (MH scores 39 and 36, respec-
tively). However, mediation by time accounted for only a non-
significant 3% of the relationship between MH score and likability
(b = �0.02; p > 0.25; 95% CI: �0.09, 0.05). Thus, while peak rating
times coincide closely with the location of the UV on the MH spec-
trum (prediction #1), our mediation analysis (prediction #2) did
not indicate a strong contribution of boundary confusion to the
UV effect.
3. Experiment 2: a controlled series of composed face images

3.1. Methods

Experiments 2A and 2B shared the following stimuli and subject
recruitment procedures. We created stimuli using a complemen-
tary approach to that used in Experiment 1. Rather than using a
large collection of photographs of actual robots, we precisely con-
trolled a number of extraneous parameters by digitally composing
a series of robot faces ranging from very mechanical to very
human-like. A series of robot faces varying along the spectrum of
robot to human would be most easily created by digitally morph-
ing in stages between a purely robotic and a purely human face
using commercial software to cross-dissolve and warp the faces
(Katsyri et al., 2015). However, our goal was to study human
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responses to realistic robot faces that can actually be built and that
the subjects believe to exist. Therefore, each face was individually
composed (Adobe Photoshop CS) using parts derived from images
of actual built robots (as well as one doll and one human) and mor-
phometry was standardized to the human face. We adopted this
approach not only to preserve the ‘‘buildability” of the faces, but
also to help ensure that each face exhibited a set of features consid-
ered by working designers to be congruous and appropriate to that
type of robot.

We controlled a wide variety of characteristics, including:

1. Framing, angle, and lighting.
2. Aspect ratio of face (and contours, when skin was present).
3. Position, angle, and size of mouth, nose, eyes, eyebrows,

and ears (when present).
4. Iris size and color.

Because parameters for realism in a human face are more con-
strained than those in robot faces, we used the human face as the
standard to which the other faces were adjusted. The faces were
presented in color on a white background. The resultant six-face
series is shown in Fig. 4A. As a manipulation check, we recruited
a separate sample of subjects to rank the stimuli in order of per-
ceived human-resemblance; these subjects (n = 12) all selected
the intended robot-to-human ordering.

We used a printed questionnaire to measure the subjects’ emo-
tional responses to each robot face. The questionnaire instructed
Fig. 4. Uncanny Valley in a controlled face series (panel A) for likability (panel B) and trus
sharing the same letter annotation did not differ significantly from each other on the ou
subjects to view the six face images and rate how much they
thought they would like to interact with each. Specifically, subjects
were instructed to ‘‘Estimate how friendly and enjoyable (or
creepy) it might be to interact with the robot in some everyday sit-
uation, such as asking a question at a museum’s information
booth.” Subjects rated the likability of each robot on a VAS similar
to that used in Experiment 1B. If subjects were to have noticed that
the faces formed an orderly series progressing from mechanical to
human, they might have tended to rank their responses to conform
to that pattern. Therefore, we arranged the faces in a randomized
order that was the same for all subjects. In addition, to further dis-
guise the close relationship among the faces, ‘‘decoy” robot faces
(responses to which were not analyzed) were interspersed with
the actual test faces. Because the order of presentation (even when
randomized) might have influenced subjects’ expectations of how
widely the faces would range in likability, subjects were instructed
to quickly browse through the entire series of faces before begin-
ning the task and were permitted to revise their responses after
rating all the faces.

3.2. Experiment 2A: likability

3.2.1. Methods
To investigate the presence of an UV effect, we obtained esti-

mates of the relative likability of each face by fitting a linear
mixed-effects model with random intercepts by subject. The pri-
mary coefficients of interest were the main effects for each face,
t-motivated wagering (panel C). Error bars represent 95% confidence intervals. Faces
tcome (based on Tukey-adjusted t-tests of least-squares means).
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treated as a categorical variable. We used a v2 test of nested mod-
els to assess for overall differences in likability across the faces. To
assess for the specific differences in likability across faces pre-
dicted by the UV model, we used Tukey-adjusted, pairwise t-
tests of least-squares means estimated via the mixed model fit.

3.2.2. Results
Subjects (n = 52 after the exclusion of 1 subject who misunder-

stood how to use the VAS) were 40% male with median age
44 years. There were significant differences in likability across
the face stimuli (Fig. 4B; global test of nested models:
v2
5 ¼ 80:63, p < 0.001). It is important to note that intervals

between faces on the X-axis cannot be assumed to be equal. The
fully human Face #6 was rated the most likable, with a mean rating
far above the neutral point of the scale (mean VAS rating = +34;
95% CI: 24, 44); Face #4 was rated the least likable, with a mean
rating far below the neutral point of the scale (mean VAS rat-
ing = �25; 95% CI: �34, �15). Faces #1, #3, and #4 were consid-
ered significantly less likable than Faces #2, #5, and #6; the fully
human Face #6 was considered significantly more likable than all
the others (pairwise comparisons, p < 0.05). There were not signif-
icant differences in likability across Faces #1, #3, and #4, or
between Faces #2 and #5.

3.3. Experiment 2B: trust-motivated behavior

3.3.1. Methods
Subjects completed an investment-game implicit measure of

trust as in Experiment 1C; stimuli were identical to those used in
Experiment 2A. As in Experiment 2A, we used a linear mixed-
effects model to assess for UV effects on trust. Secondarily, we
investigated the effect of a subtle manipulation of facial expres-
sion, namely a change in eyebrow angle, on inferred trustworthi-
ness (Appendix B).

3.3.2. Results
Subjects (n = 92) were 78% female with median age 32 years.

Each of the face stimuli was viewed on average by 46 subjects.10

The median response time was 7.5 s. Fig. 4C shows the results of
the investment game. Subjects wagered a mean of $44 of the $100
endowment (95% CI: $41, $48). The mixed-effects model indicated
significant differences across faces in trust elicited (global test of
nested models: v2

5 ¼ 28:31, p < 0.001). Face #2 elicited significantly
more trust than Faces #4, #5, and #6 (p < 0.05), while all other pair-
wise comparisons were non-significant.

3.4. Replication of experiment 2 with alternative stimuli

3.4.1. Methods
We replicated Experiments 2A–2B using a second novel set of

composed stimuli. To provide assurance that these new stimuli
were selected a priori and were not edited to force a replication
of the initially reported effect, stimuli and procedures for the repli-
cation study were pre-registered (https://osf.io/3rjnk/). All meth-
ods, including analysis, were as described for Experiment 2A–2B,
except as follows. The replication took place online using recruit-
ment procedures as in Experiment 1. We used empirical ratings
of human- and mechanical-resemblance estimated in Experiment
1 to guide the construction of a new set of six stimuli that appro-
priately spanned the MH spectrum. Specifically, we informed the
appearance of the new stimuli (Fig. 5A) by the faces in Experiment
1A that most closely achieved average MH scores at the 0% (fully
10 As detailed in the Appendix, due to a secondary experiment nested within
Experiment 2B, subjects did not each judge all six faces.
mechanical), 20%, 40%, 60%, and 80% points of the scale. We mod-
ified an image of an actual human to serve as the new Face #6. As
in Experiment 2, face stimuli underwent extensive digital editing
in order to standardize morphometry to the human face. A manip-
ulation check ensured that the stimulus set had achieved the
intending ordering from mechanical to human-like. (However, it
is important to note that, for example, Face #4 in the new stimulus
set cannot be assumed to correspond to exactly the same position
on the X-axis as Face #4 in the original stimulus set.)

3.4.2. Results for likability
105 subjects (no exclusions) completed Replication Experiment

2A. There were significant differences in likability across the face
stimuli (Fig. 5B; global test of nested models: v2

5 ¼ 214:80,
p < 0.001). The fully human Face #6 was rated the most likable
(mean VAS rating = +43; 95% CI: 32, 54). Face #1 was rated the
least likable, (mean VAS rating = �40; 95% CI: �48, �31), followed
by Face #3 (mean VAS rating = �33; 95% CI: �41, �26). All Tukey-
adjusted pairwise comparisons were significant except for those
between Faces #1 and #3 and between Faces #3 and #4.

3.4.3. Results for trust-motivated behavior
98 subjects (after the exclusion of 2 subjects who reported sub-

stantial technical or comprehension problems) completed Replica-
tion Experiment 2B. There were not significant differences in trust
across the face stimuli (Fig. 5C; global test of nested models:
v2
5 ¼ 8:76, p = 0.12), and pairwise comparisons were all

nonsignificant.
4. Discussion

Humans often have unexpectedly uncomfortable reactions to
android robots that were designed to have pleasant social interac-
tions with humans. The Uncanny Valley theory is a commonly
cited, but controversial, explanation for human discomfort with
imperfect human likenesses, yet it has been tested empirically by
only a few small studies that yielded conflicting results. We used
innovative methods to address some of the most difficult issues
in measuring human social and affective reactions to social android
robot faces.

To minimize the biases that potentially plague the selection and
creation of a small set of robot faces to represent the mechanical-
human spectrum, our first major innovation was the use of two
complementary and novel methods of stimulus creation. In Exper-
iment 1, we used an objective selection process to obtain a large
sample of images from the actual wild-type population of robots
that have been built under real-world constraints of design and
construction for the purpose of social interaction. By empirically
estimating the perceived human–mechanical resemblance of each
face, we precisely located their positions on a fine-grained spec-
trum from mechanical to human. Furthermore, separately measur-
ing mechanical- and human-resemblance of the faces enabled us to
validate the largely unquestioned assumption that the Uncanny
Valley can be reasonably represented on a single, unidimensional
X-axis of mechano-humanness. Additionally, we addressed limita-
tions of relying solely on self-report as a measure of social reac-
tions to faces. To assess how deeply those explicit reactions
penetrate to affect actual social behavior, we quantified trust-
motivated behavior by developing a novel adaptation of the classic
game-theory paradigm of a one-shot wagering game.

In Experiment 1, as an inherent feature of the stimulus selection
process, the robot faces showed natural variability in factors other
than human–mechanical resemblance that might influence likabil-
ity and trust, such as proportions (Stirrat & Perrett, 2010), the pres-
ence or absence of various facial features, facial expression (Eckel &

https://osf.io/3rjnk/


Fig. 5. Uncanny Valley in a replication stimulus set (panel A) for likability (panel B) and trust-motivated wagering (panel C). Error bars represent 95% confidence intervals.
Faces sharing the same letter annotation did not differ significantly on the outcome (based on Tukey-adjusted t-tests of least-squares means).
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Wilson, 1998), displayed emotion (Scharlemann et al., 2001), posi-
tioning (Mara & Appel, 2015), background setting, sex (Bohnet &
Zeckhauser, 2004; Buchan, Croson, & Solnik, 2008), age (Holm &
Nystedt, 2005), race (Baxter, 1973; Glaeser, Laibson, Scheinkman,
& Soutter, 2000), ethnicity (Fershtman & Gneezy, 2001), physical
attractiveness (Wilson & Eckel, 2006), and resemblance to the
viewer (DeBruine, 2002). Additionally, despite our use of objective
inclusion criteria, the corpus of robot faces images available
through an Internet search may be a biased representation of the
total possible range of robots; factors such as designer intentions
and intended audiences may confound the relationship between
mechano-humanness and elicited social responses.

Therefore, Experiment 2 took a complementary approach in
which we digitally created a novel set of robot faces with tightly
controlled morphometry, expression, and presentation. These
stimuli were based on real androids (and one human) in order to
respect real-world constraints of robot build and design (in con-
trast to the unnaturally blended images or amalgams used in pre-
vious studies).

4.1. An Uncanny Valley for explicitly-rated likability

We found that all key characteristics of the Uncanny Valley are
robustly apparent in both the wild-type sample and digitally com-
posed robot face stimuli. To a point, likability increased with
increasing human-resemblance beyond the nearly neutral reac-
tions elicited by the most mechanical robots. But as faces became
more human than mechanical, they began to be perceived as
frankly unlikable. Finally, as faces became nearly human, likability
sharply rebounded to a final positive ending point. This steep final
increase is an important feature in Mori’s conceptualization (Mori,
1970) and suggests that although the most human-like robots may
be more likable than reliably perfect human likenesses, they may
occupy a precarious position at which small faults in their human-
ness might send the social interaction tumbling. The results of
Experiment 2 confirm that for a particular morphometric configu-
ration of robot face, an Uncanny Valley effect can indeed be a
potent factor. Results were strikingly similar between the wild-
type and composed stimulus sets, both in qualitative visual pat-
terns and in the quantitative likability values defining the inflec-
tion points – that is, the actual depth of the Uncanny Valley’s
nadir and height of its apices. In contrast, a previous study (whose
sample of wild-type robot whole-body images included non-
human characters and contained few highly human-like robots)
that were rated on a 5-point Likert scale did not find evidence of
an Uncanny Valley (Rosenthal-von der Pütten & Krämer, 2014).

Of course, the Uncanny Valley is not the only important factor
in determining a robot’s perceived likability: in Experiment 1,
there were individual wild-type robots throughout the mechano-
humanness spectrum that were much more likable or unlikable
than predicted by the Uncanny Valley effect alone. Perceived emo-
tion, for example, may play a central role; predictably, robots
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showing more positive emotion were perceived as more likable.
However, the Uncanny Valley effect persisted among faces per-
ceived as displaying almost no emotion.

Previous theories have cited category confusion occurring at the
mechanical-human boundary as a possible mechanism for
Uncanny Valley effects (Cheetham et al., 2014; Katsyri et al.,
2015). Indeed, our preliminary analysis indicated that the position
on the mechano-humanness spectrum associated with the longest
rating times in Experiment 1A (suggestive of confusion or deliber-
ation) coincided almost exactly with the point of minimum likabil-
ity in Experiment 1B. However, rating time did not statistically
mediate the relationship between mechano-humanness and lika-
bility, highlighting the need for more research into mechanisms
underlying the Uncanny Valley. Such research might inform prac-
tical design choices to circumvent Uncanny Valley effects or might
alternatively indicate that the Uncanny Valley is an inherent and
insurmountable feature of human category perception.

4.2. An Uncanny Valley for trust-motivated behavior

Similarly to explicit ratings of likability, trust-motivated behav-
ior with real financial consequences demonstrated all the key fea-
tures of an Uncanny Valley in both the wild-type sample and the
controlled face series. However, in the post hoc replication using
a second controlled face series, trust-motivated behavior did not
exhibit pronounced Uncanny Valley characteristics. Of note, the
original controlled series of faces (Experiment 2B) represented a
female individual, while the replication stimulus series (Fig. 5A)
was male, suggesting that trust may be particularly sensitive to dif-
ferences in the characteristics of the individual represented by the
series. Specifically, the apparently attenuated Uncanny Valley for
trust in the male replication stimuli qualitatively appears to largely
reflect a failure of the most human-like faces to ‘‘recover” from an
initial small decrease in trust relative to the most mechanical robot
faces in the series. Given that the sex of a robot may be more obvi-
ous in human-like versus mechanical faces, this attenuation may
reflect a known tendency for male humans to be perceived as less
trustworthy than female humans (Bohnet & Zeckhauser, 2004;
Buchan et al., 2008). We speculate that, compared to likability,
Uncanny Valley effects on trust may interact more strongly with
robots’ individual characteristics including, for example, sex, facial
morphometry, and perceived emotion. Identifying such modera-
tors in future research would clarify both cognitive mechanisms
and practical impacts of Uncanny Valley effects on trust.

Collectively, these results suggest that the Uncanny Valley can
be more than a superficial result of asking subjects to consciously
judge the robots’ likability – rather, at least in some types of robots,
it has more profound effects on the emotional-cognitive motiva-
tions of strategic social behavior, affecting one of the most funda-
mental social judgments: that of trustworthiness (Cosmides &
Tooby, 1992; de Melo, Carnevale, & Gratch, 2013).

4.3. What is meant by ‘‘trusting” a robot?

We have used the term ‘‘trust” to describe subjects’ willingness
to take a real financial risk on the possibility that a robot will act
prosocially in the subject’s interest. Indeed, the ‘‘investment game”
model (Berg et al., 1995) from which our game derives is generally
accepted as the standard experimental instrument for measure-
ment of trust (Camerer, 2003). One important factor in such differ-
ential judgments of the trustworthiness of individuals is the
concept of ‘‘encapsulated interest” (Hardin, 2002); that is, we trust
others whom we believe have interests that encapsulate our own.
The idea that our subjects may have attempted to assess the
robots’ ‘‘interests” raises the intriguing possibility that our mea-
surements touch upon the subjects’ application of a theory of mind
(Premack & Woodruff, 1978) to their robot social partners, to some
degree attributing an intentional stance to the robots that implies
thoughts, beliefs, and desires (Dennett, 1989). Alternatively, it is
possible that the subjects’ decisions regarding encapsulated inter-
est were not, in fact, directed toward the robot, but rather that they
treated the robot face as an inanimate agent of the robot maker. In
Searle’s terms (Searle, 1983), the subjects metaphorically rational-
ized their interaction with the robots by attributing an ‘‘as-if inten-
tionality” to them, but this is distinct from the true ‘‘intrinsic
intentionality” of the human designer. Experiments employing
game-theory methods can be designed to address these issues in
the future; an enriched theoretical understanding of trust toward
robots could inform robot design choices to overcome Uncanny
Valley effects.

4.4. Conclusions

Our investigations indicate that the Uncanny Valley is a real
influence on humans’ perceptions of robots as social partners,
robustly influencing not only humans’ conscious assessments of
their own reactions, but also able to penetrate more deeply to
modify their actual trust-related social behavior with robot coun-
terparts. In addition, for robots throughout the mechano-
humanness spectrum, humans appear to infer trustworthiness
from affective cues (subtle facial expressions) known to govern
human–human social judgments. These observations help locate
the study of human-android robot interaction squarely in the
sphere of human social psychology rather than solely in the tradi-
tional disciplines of human factors or human–machine interaction
(Hoff & Bashir, 2015). Our innovative methods of assessing human
social perceptions of android robots in relation to their degree of
mechano-humanness provide tools for further studies into social
psychological and affective factors that could inform the design
of socially competent robots.
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